Remote sensing is a crucial and innovative technology that utilizes satellite and aerial sensor technologies for the detection and classification of objects on Earth. This technology plays a significant role in environmental monitoring, agricultural management, and natural resource conservation. It enables scientists to accumulate massive amounts of data over large geographical areas and timeframes, providing…
Large Language Models (LLMs) such as GPT-4, Gemini, and Claude have exhibited striking capabilities but evaluating them is complex, necessitating an integrated, transparent, standardized and reproducible framework. Despite the challenges, no comprehensive evaluation technique currently exists, which has hampered progress in this area.
However, researchers from the LMMs-Lab Team and S-Lab at NTU, Singapore, developed the…
Fundamental large language models (LLMs) including GPT-4, Gemini and Claude have shown significant competencies, matching or surpassing human performance. In this light, benchmarks are necessary tools to determine the strengths and weaknesses of various models. Transparent, standardized and reproducible evaluations are crucial and much needed for language and multimodal models. However, the development of custom…
The field of large language models (LLMs) is developing at a rapid pace due to the need to process extensive text inputs and deliver accurate, efficient responses. Open-access LLMs and proprietary models like GPT-4-Turbo must handle substantial amounts of information that often exceed a single prompt’s limitations. This is key for tasks like document summarisation,…
As AI systems continue to advance, researchers and policymakers are concerned about ensuring their safe and ethical use. The main issues center around the potential risks posed by ever-evolving and increasingly powerful AI systems. These risks involve potential misuse, ethical issues, and unexpected consequences stemming from AI's expanding abilities. Several strategies are being explored by…
Automated Machine Learning (AutoML) has become crucial for data-driven decision-making, enabling experts to utilize machine learning without needing extensive statistical knowledge. However, a key challenge faced by current AutoML systems is the efficient and correct handling of multimodal data, which can consume significant resources.
Addressing this issue, scientists from the Eindhoven University of Technology have put…
The existing Artificial Intelligence (AI) task management methods, including AutoGPT, BabyAGI, and LangChain, often rely on free-text outputs, which can be lengthy and inefficient. These frameworks commonly struggle with keeping context and managing the extensive action space linked with arbitrary tasks. This report focuses on the inefficiencies of these current agentic frameworks, particularly in handling…