In the world of artificial intelligence (AI), integrating vision and language has been a longstanding challenge. A new research paper introduces Strongly Supervised pre-training with ScreenShots (S4), a new method that harnesses the power of vision-language models (VLMs) using the extensive data available from web screenshots. By bridging the gap between traditional pre-training paradigms and…
In the rapidly advancing field of 3D generative AI, a new wave of breakthroughs are paving the way for blurred boundaries between 3D generation and 3D reconstruction from limited views. Propelled by advancements in generative model topologies and publicly available 3D datasets, researchers have begun to explore the use of 2D diffusion models to generate…
Recent advancements in text-to-image generation have been largely driven by diffusion models; however, these models often struggle to comprehend dense prompts with complex correlations and detailed descriptions. Addressing these limitations, the Efficient Large Language Model Adapter (ELLA) is presented as a novel method in the field.
ELLA enhances the capabilities of diffusion models through the integration…
Diffusion models are widely used in image, video, and audio generation. However, their sampling process is costly in terms of computation, and lacks compared to the efficiency in training. Alternatively, Consistency Models, and their variants Consistency Training and Consistency Distillation, provide quicker sampling but compromise on the quality of images. TRACT is another known method…
Advanced language models (ALMs) have significantly improved artificial intelligence's understanding and generation of human language. These developments reformed natural language processing (NLP) and led to various advancements in AI applications, such as enhancing conversational agents and automating complex text analysis tasks. However, training these models effectively remains a challenge due to heavy computation required and…
Large Language Models (LLMs) have shown impressive competencies across various disciplines, from generating unique content and answering questions to summarizing large text chunks, completing codes, and translating languages. They are considered one of the most significant advancements in Artificial Intelligence (AI). It is generally assumed that for LLMs to possess considerable mathematical abilities, they need…
In data science and artificial intelligence, the practice of embedding entities into vector spaces allows for numerical representation of various objects, such as words, users, and items. This method facilitates the measurement of similarities among entities, asserting that vectors closer in space are more similar. A favored metric for identifying similarities is cosine similarity, which…
The software development industry is continuously seeking advanced, scalable, and flexible tools to handle complex tasks such as reasoning, summarization, and multilingual question answering. Addressing these needs and challenges—including dealing with vast amounts of data, ensuring model performance across different languages, and offering a versatile interface—requires innovative solutions. To this end, large language models have…
Idiopathic Pulmonary Fibrosis (IPF) and renal fibrosis are complex diseases that have challenged pharmaceutical development, as they lack efficient treatment methods. Current potential drug targets, such as TGF-β signaling pathways, have not led to viable therapies for actual use. As a result, IPF, characterized by fibroblast proliferation and extracellular matrix deposition, continues to be particularly…
A team of researchers from Peking University and Alibaba Group have introduced FastV, a model designed to mitigate the inefficiencies in computational processing within Large Vision-Language Models (LVLMs). In particular, FastV addresses the bias exhibited by the attention mechanism in LVLMs, which tends to favour textual tokens over visual tokens. Existing models - including LLaVA-1.5…
Today's increasingly pervasive artificial intelligence (AI) technologies have given rise to concerns over the perpetuation of historically entrenched human biases, particularly within marginalized communities. New research by academics from the Allen Institute for AI, Stanford University, and the University of Chicago exposes a worrying form of bias rarely discussed before: Dialect Prejudice against speakers of…
Recent advancements in large language models (LLMs), which have revolutionized fields like healthcare, translation, and code generation, are now being leveraged to assist the legal domain. Legal professionals often grapple with extensive, complex documents, emphasizing the need for a dedicated LLM. To address this, researchers from several prestigious institutions—including Equall.ai, MICS, CentraleSupélec, and Université Paris-Saclay—have…