Researchers from MIT have developed an image dataset that simulates peripheral vision in machine learning models, improving their object detection capabilities. However, even with this modification, the AI models still fell short of human performance. The researchers discovered that size and visual clutter, factors that impact human performance, largely did not affect the AI's ability.…
Audio deepfakes have recently been in the news, particularly in regards to their negative impacts, such as fraudulent robocalls pretending to be Joe Biden, encouraging people not to vote. These malicious uses could negatively affect political campaigns, financial markets, and lead to identity theft. However, Nauman Dawalatabad, a postdoc student at MIT, argues that deepfakes…
Large Language Models (LLMs) present a potential problem in their inability to accurately represent uncertainty about the reliability of their output. This uncertainty can have serious consequences in areas such as healthcare, where stakeholder confidence in the system's predictions is critical. Variations in freeform language generation can further complicate the issue, as these cannot be…
With their capacity to process and generate human-like text, Large Language Models (LLMs) have become critical tools that empower a variety of applications, from chatbots and data analysis to other advanced AI applications. The success of LLMs relies heavily on the diversity and quality of instructional data used for training.
One of the operative challenges in…
Artificial Intelligence (AI) aims to create systems that can execute tasks normally requiring human intelligence. These tasks include learning, reasoning, problem-solving, perception, and language understanding. Such technologies are highly beneficial in various industries such as healthcare, finance, transportation, and entertainment. Consequently, optimizing AI models to efficiently and precisely perform these tasks is a significant challenge…
Large Language Models (LLMs) are crucial for a variety of applications, from machine translation to predictive text completion. They face challenges, including capturing complex, long-term dependencies and enabling efficient large-scale parallelisation. Attention-based models that have dominated LLM architectures struggle with computational complexity and extrapolating to longer sequences. Meanwhile, State Space Models (SSMs) offer linear computation…
Neural networks using gradient descent often perform well even when overparameterized and initialized randomly. They frequently find global optimal solutions, achieving zero training error without overfitting, a phenomenon referred to as "benign overfitting." However, in the case of Rectified Linear Unit (ReLU) networks, solutions can lead to overfitting if they interpolate the data. Particularly in…
Pre-trained Large language models (LLMs), such as transformers, typically have a fixed context window size, most commonly around 4K tokens. Nevertheless, numerous applications require processing significantly longer contexts, going all the way up to 256K tokens. The challenge that arises in elongating the context length of these models lies primarily in the efficient use of…
Generative AI has vast potential in creating synthetic data that can mimic real-world scenarios, which in turn can aid organizations in improving their operations. In line with this, DataCebo, a spinout from MIT, has developed a generative software system referred to as the Synthetic Data Vault (SDV), which has been employed by thousands of data…
Peripheral vision, most humans' mechanism to see objects not directly in their line of sight, although with less detail, does not exist in AI. However, researchers at MIT have made significant progress towards this by developing an image dataset to simulate peripheral vision in machine learning models. The research indicated that models trained with this…
Nauman Dawalatabad, a postdoctoral researcher discusses the concerns and potential benefits of audio deepfake technology in a Q&A with MIT News. He addresses ethical considerations regarding the concealment of a source speaker’s identity in audio deepfakes, noting that speech contains a wealth of sensitive personal information beyond identity and content, such as age, gender and…
The proliferation of Large Language Models (LLMs) in the field of Artificial Intelligence (AI) has been a topic of much debate on Reddit. In a post, a user highlighted the existence of over 700,000 LLMs, raising questions about the usefulness and potential of these models. This has sparked a broad debate about the consequences of…