In recent years, diffusion models have emerged as powerful assets in various fields including image and 3D object creation. Renowned for their proficiency in managing denoising assignments, these models can effectively transform random noise into the targeted data distribution. But their deployment triggers high computational costs, mainly because these deep networks are dense, which means…
Researchers from the Language Technologies Institute at Carnegie Mellon University and the Institute for Interdisciplinary Information Sciences at Tsinghua University have developed a groundbreaking framework - Lean-STaR - that bridges informal human reasoning with formal proof generation to improve machine-driven theorem proving. This research seeks to utilize the potential of integrating natural language thought processes…
Language Learning Models (LLMs) that are capable of interpreting natural language instructions to complete tasks are an exciting area of artificial intelligence research with direct implications for healthcare. Still, theypresent challenges as well. Researchers from Northeastern University and Codametrix conducted a study to evaluate the sensitivity of various LLMs to different natural language instructions specifically…
ChatGPT, an AI system by OpenAI, is making waves in the artificial intelligence field with its advanced language capabilities. Capable of performing tasks such as drafting emails, conducting research, and providing detailed information, such tools are transforming the way office tasks are conducted. They contribute to more efficient and productive workplaces. As with any technological…
Together AI has introduced a new inference stack, marking a significant breakthrough in AI inference. This new stack has a decoding speed which is four times faster than the open-source vLLM, and outperforms industry-leading commercial solutions such as Amazon Bedrock, Azure AI, Octo AI, and Fireworks by a margin of 1.3x to 2.5x. The new…
Optimal transport is a mathematical field focused on the most effective methods for moving mass between probability distributions. It has a broad range of applications in disciplines such as economics, physics, and machine learning. However, the optimization of probability measures in optimal transport frequently faces challenges due to complex cost functions influenced by various factors…
AI chatbots like ChatGPT, trained on vast amounts of text from billions of websites, have a broad potential output which includes harmful or toxic material, or even leaking personal information. To maintain safety standards, large language models typically undergo a process known as red-teaming, where human testers use prompts to elicit and manage unsafe outputs.…
Biomedical segmentation pertains to marking pixels from significant structures in a medical image like cells or organs which is crucial for disease diagnosis and treatment. Generally, a single answer is provided by most artificial intelligence (AI) models while making these annotations, but such a process is not always straightforward.
In a recent paper, Marianne Rakic, an…
The pursuit of artificial general intelligence (AGI), where an AI can perform tasks similar to a human, is at the forefront of research. This involves complex systems mimicking behaviors observed in natural organisms. Despite this, the belief that AI cannot obtain natural intelligence is prevalent. Some limitations of AI include its inability to navigate unpredictable…
Large language models (LLMs) are exceptional at generating content and solving complex problems across various domains. Nevertheless, they struggle with multi-step deductive reasoning — a process requiring coherent and logical thinking over extended interactions. The existing training methodologies for LLMs, based on next-token prediction, do not equip them to apply logical rules effectively or maintain…
Harnessing high-dimensional clinical data (HDCD) – health care datasets with significantly higher variables than patients – for genetic discovery and disease prediction poses a considerable challenge. HDCD analysis and processing demands immense computational resources due to its rapidly expanding data space. This further complicates interpreting models based on this data, potentially hindering clinical decisions. Traditional…
The evaluation of large language models (LLMs) has always been a daunting task due to the complexity and versatility of these models. However, researchers from Google DeepMind, Google, and UMass Amherst have introduced FLAMe, a new family of evaluation models developed to assess the reliability and accuracy of LLMs. FLAMe stands for Foundational Large Autorater…